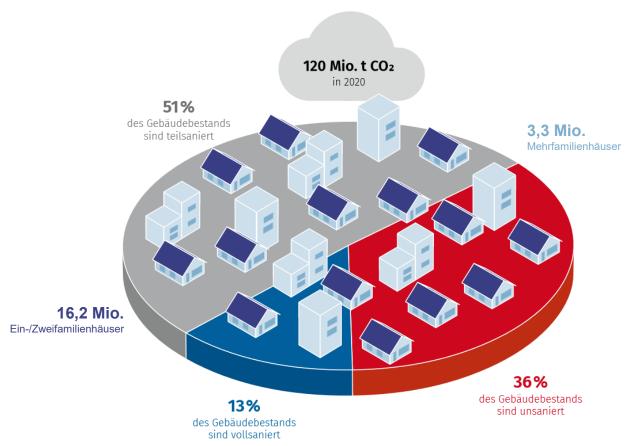
16. Seminar Bauen im Bestand.

<u>Buderus</u>


Wärmepumpen – Lösungen für die Klimaneutralität im Gebäudebereich?

17.04.2024 | Referenten: Martin Klar, Jonas Gerlach

Gebäudebestand Deutschland.

Sanierungsgrad.

- Großer Bestand an Ein- und Zweifamilienhäuser mit hohem Wärmebedarf (bis über 200 kWh/m²*a)
- Von den rund 24 Mio. installierten
 Wärmeerzeugern werden über 78 % mit
 Gas, Öl oder Kohle betrieben.
- Wärmeerzeuger, die älter als 30 Jahre sind, sollten erneuert werden (über 1 Mio. Wärmeerzeuger im Markt)

Quelle: In Anlehnung an Gebäudebestand 2020, Zielbild Wärmemarkt 2045, BDH (Bundesverband der Deutschen Heizungsindustrie e.V.) und https://de.statista.com/statistik/daten/studie/1422354/umfrage/wohngebaeude-in-deutschland-nach-gebaeudetyp/

Gebäudebestand Deutschland.

Der Heizungskeller.

https://www.haustec.de/heizung/waermeerzeugung/kesseltauschjahr-2017-diese-heizkessel-muessen-raus

Gebäudebestand Deutschland.

Der Heizungskeller.

Gebäudeenergiegesetz 2024.

Übersicht Heizungsmodernisierung.

	Wärmepumpen-Systeme	Wärmepumpen-	Öl-/Gas-Brennwertsystem (Hybrid-Exzellenz- / Green-Fuels-Ready)						
	(monoenergetisch)	Hybridsystem	noch <u>keine</u> Wärmeplanung	noch <u>keine</u> Wärmeplanung Wärmeplanung abgeschlossen (kein Wärme- oder H ₂ -Netz geplant)					
2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044		≥ 65 %	2024 2025 2026 2027 2028 15 % Bioanteil (oder ≥ 65 %) 30 % Bioanteil (oder ≥ 65 %) 60 % Bioanteil (oder ≥ 65 %)	2024 2025 2026 2027 2028 2031 2032 2033 2033					
2045	Wärmepumpen und Wärmepumpen	-Hybridsysteme	Bio-Pflicht ab 2029, z.B. Biomethan	Allgemeine Übergangsfrist von	Übergangsfrist von max. 10 Jahren,				
	erfüllen die EE65% Anforderungen v		(G260), Bio-LPG (G260/1, Bio-Öl (z.B. HVO)	max. 5 Jahren, um EE65% zu erfüllen. Z.B. Wärmepumpen-Außeneinheit nachrüsten ("Hybrid-Exzellenz") oder Bio-Anteil mind. 65 %.	um sich an das Wärmenetz anzuschließen (Anschlussvertrag erforderlich) bzw. Einsatz eines Gas-Brennwertgerätes, welches 100% H ₂ -ready ist. Übergangsfrist kann u.U. bei einem Wasserstoffnetz auch länger sein.				

	Wärmepumpen-Systeme	Wärmepumpen-	Öl-/Gas-Brennwertsystem (Hybrid-Exzellenz- / Green-Fuels-Ready)						
	(monoenergetisch)	Hybridsystem	noch <u>keine</u> Wärmeplanung	noch <u>keine</u> Wärmeplanung Wärmeplanung abgeschlossen (<u>kein</u> Wärme- oder H ₂ -Netz geplant)					
2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043		≥ 65 %	2024 2025 2026 2027 2028 15 % Bioanteil (oder ≥ 65 %) 30 % Bioanteil (oder ≥ 65 %) 60 % Bioanteil (oder ≥ 65 %)	2024 2025 2026 2027 2028 2030 2031 2032 2033 2033					
	Wärmepumpen und Wärmepumpen- erfüllen die EE65% Anforderungen v	von Anfang an.	Bio-Pflicht ab 2029, z.B. Biomethan (G260), Bio-LPG (G260/1, Bio-Öl (z.B. HVO)	Allgemeine Übergangsfrist von max. 5 Jahren, um EE65% zu erfüllen. Z.B. Wärmepumpen-Außeneinheit nachrüsten ("Hybrid-Exzellenz") oder Bio-Anteil mind. 65 %.	Übergangsfrist von max. 10 Jahren, um sich an das Wärmenetz anzuschließen (Anschlussvertrag erforderlich) bzw. Einsatz eines Gas-Brennwertgerätes, welches 100% H ₂ -ready ist. Übergangsfrist kann u.U. bei einem Wasserstoffnetz auch länger sein.				

Bundesförderung für effiziente Gebäude 2024.

Übersicht Förderung Einzelmaßnahmen (BEG EM).

Maßnahme	Zuschuss	iSFP- Bonus WG	Effizienz- Bonus ¹	Klimageschwindigkeits- Bonus²	Einkommens- Bonus³	Max. Fördersatz	Höchstgrenze förderfähiger Kosten Wohngebäude (Zuschuss)	Höchstgrenze förderfähiger Kosten Wohngebäude (Kredit)	Höchstgrenze förderfähiger Kosten Nichtwohngebäude (Zuschuss)												
Wärmepumpen	30%		5%	max. 20%		70%															
Wärmepumpen-Hybrid (Wärmepumpenanteil am Hybrid-System)	30%		5%		659	65%	4.10/5		Bis 150 m² NGF: 30.000 €												
Biomasseheizungen ⁴	30%				_	70%	1. WE: 30.000 €		Bis 400 m ² NGF:												
Brennstoffzellenheizung	30%					70%	30.000 e		200 € pro m² NGF												
Wasserstofffähige Heizung (Investitionsmehrkosten)	30%				30% 70% 2. bis 6. WE: 15.000 €		15.000 €		Bis 1.000 m² NGF:												
Innovative Heizungstechniks	30%					70%			120 € pro m² NGF												
Solarthermische Anlagen	30%			max. 20%		70%	Ab 7. WE:	400.000.0	120 c pro in 1101												
Errichtung, Umbau, Erweiterung Gebäudenetz	30%																70%	8.000€	0.000 c	120.000 € pro WE ⁵	Ab 1.000 m² NGF: zusätzlich
Gebäudenetzanschluss	30%					70%			80 € pro m² NGF												
Wärmenetzanschluss	30%					70%															
Gebäudehülle	15%	5%				20%															
Anlagentechnik (außer Heizung)	15%	5%				20%	30.000 € pro WE (ohne iSFP)		500 C2												
Heizungsoptimierung zur Effizienzverbesserung	15%	5%				20%	60.000 € pro WE		500 € pro m² Nettogrundfläche (NGF)												
Heizungsoptimierung zur Emissionsminderung	50%					50%	(mit iSFP)														
Fachplanung und Baubegleitung	50%					50%	Ein- und Zweifamilie Ab 3. WE: 2.0 insgesamt max. 20.		5 % pro m² NGF, max. 20.000 €												

Gebäudehülle	15%	5%		
Anlagentechnik (außer Heizung)	15%	5%		
Heizungsoptimierung zur Effizienzverbesserung	15%	5%		
Heizungsoptimierung zur Emissionsminderung	50%			
Fachplanung und Baubegleitung	50%			
¹ Für Wärmepumpen mit Wärm ² Ab 2029 Reduzierung alle zwe	ei Jahre.	•		

iSFP-

Bonus

WG

Zuschuss

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

Maßnahme

Wärmepumpen

Hybrid-System)

Wärmepumpen-Hybrid

Biomasseheizungen⁴

Brennstoffzellenheizung Wasserstofffähige Heizung

(Investitionsmehrkosten)

Solarthermische Anlagen

Erweiterung Gebäudenetz

Gebäudenetzanschluss

Wärmenetzanschluss

Errichtung, Umbau,

Innovative Heizungstechniks

(Wärmepumpenanteil am

Effizienz-

Bonus¹

5%

5%

Klimageschwindigkeits-

Bonus²

max. 20%

max. 20%

Einkommens-

Bonus³

30%

Max.

Fördersatz

70%

65%

70%

70%

70%

70%

70%

70%

70%

70%

20%

20%

20%

50%

50%

1. WE: 30.000 € 2. bis 6. WE: 15.000 € Ab 7. WE: 8.000€	120.000 € pro WE ⁵
30.000 € pro WE (ohne iSFP) 60.000 € pro WE (mit iSFP)	
Ein- und Zweifamilie Ab 3. WE: 2.0 insgesamt max. 20.0	000 € pro WE,

Höchstgrenze

förderfähiger Kosten

Wohngebäude

(Zuschuss)

120.000 € pro WE5 Nettogrundfläche (NGF)

Höchstgrenze

förderfähiger Kosten

Wohngebäude

(Kredit)

Höchstgrenze

förderfähiger Kosten

Nichtwohngebäude

(Zuschuss)

Bis 150 m² NGF:

30.000 €

Bis 400 m² NGF:

200 € pro m2 NGF

Bis 1.000 m² NGF:

zusätzlich

120 € pro m2 NGF

Ab 1.000 m2 NGF:

zusätzlich

80 € pro m² NGF

500 € pro m²

5 % pro m2 NGF,

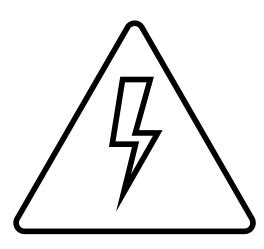
max. 20.000 €

³ Nur für selbstnutzende Eigentümer mit zu versteuerndem Haushaltseinkommen von max. 40.000 € pro Jahr.

⁴ Wenn Emissionsgrenzwert Staub von max. 2,5 mg/m³ eingehalten wird.

⁵ Nur für selbstnutzende Eigentümer mit zu versteuerndem Haushaltseinkommen von max. 90.000 € pro Jahr.

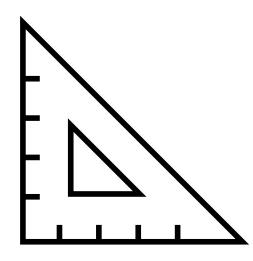
Aspekte der Auslegung – Am Beispiel Mehrfamilienhaus.



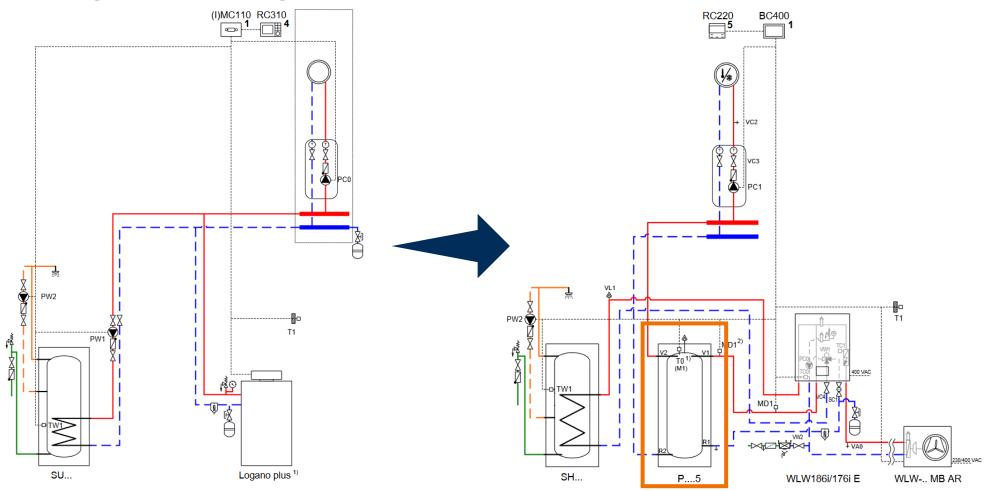
https://www.energie-experten.org/projekte/trotz-einrohrheizung-luftwaermepumpen-versorgen-48-parteien-mietshaus

- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

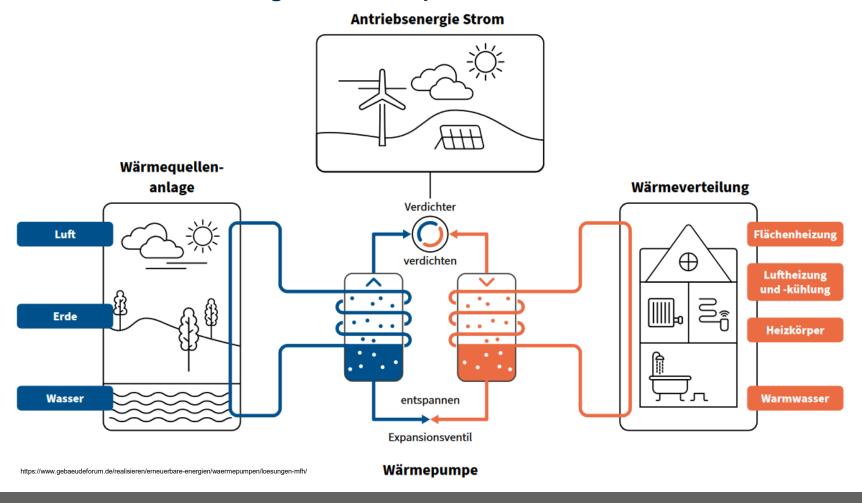

Stromversorgung.

- Netzausbau
 - Bereitstellung der benötigten Anschlussleistung
- §14a Energiewirtschaftsgesetz
 - Neue Verbrauchsanlagen müssen ohne Verzögerung angeschlossen werden
 - Dimmen auf eine elektrische Minimalleistung von 4,2 kW

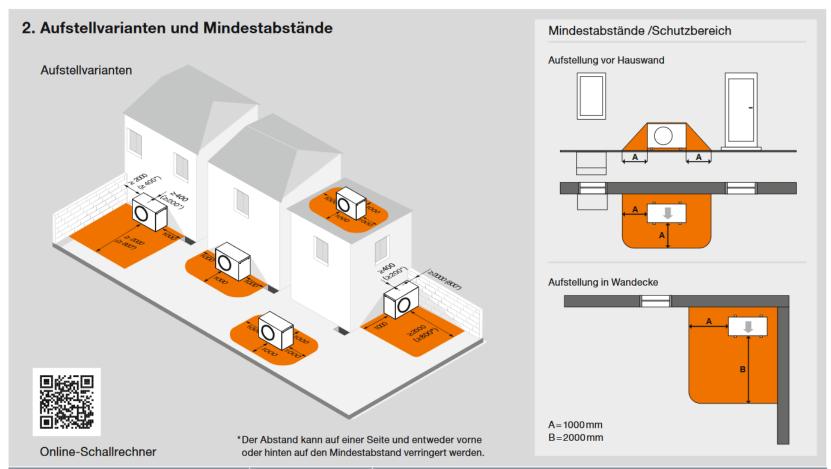


https://www.berliner-zeitung.de/wirtschaft-verantwortung/stellt-die-waermepumpe-das-deutsche-stromnetz-vor-grosse-herausforderungen-was-die bundesnetzagentur-zu-aeusserung-des-vonovia-chefs-sagt-li.346401

- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser


Platzangebot im Heizungskeller.

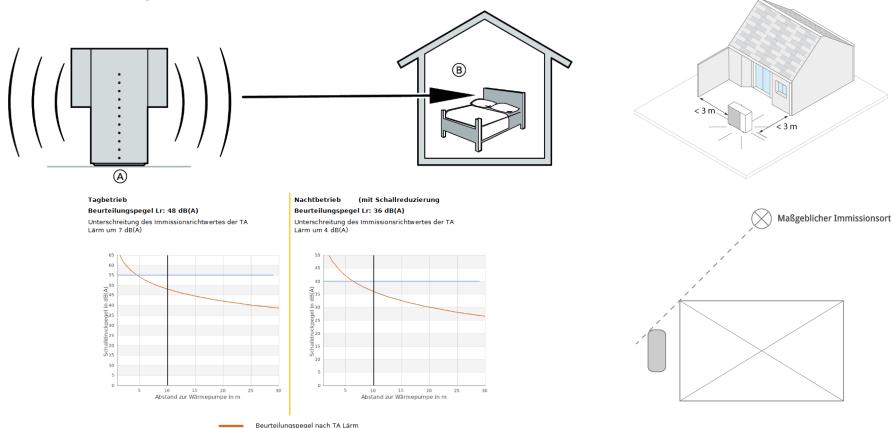
- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

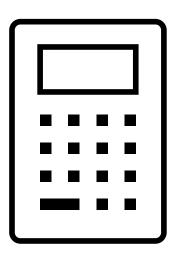

Auswahl / Erschließung der Wärmequelle.



- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

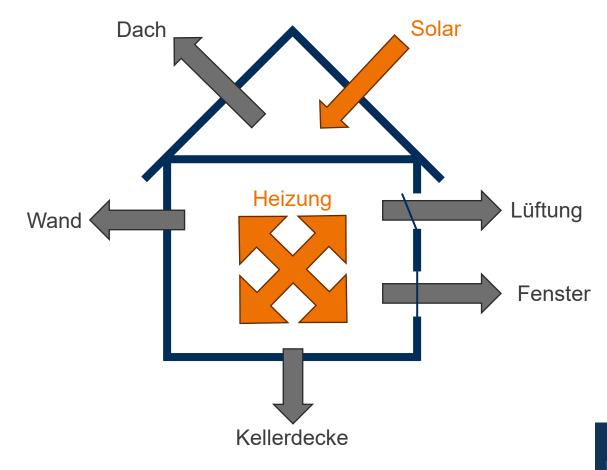
Aufstellbedingungen – Mindestabstände.



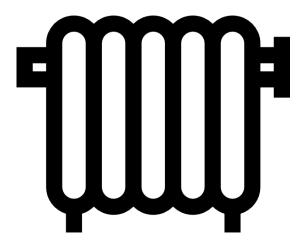

Wärmepumpen.

Aufstellbedingungen – Berücksichtigung der Schallemissionen.

Berechnung nach TA-Lärm.



- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser


Heizlastberechnung nach Verfahren B – DIN EN 12831.

RA	UM-HI	171	AST	SELECTION SE	NISTRA CONTRACTOR	III AND THE REAL PROPERTY.		Dat	tum			23.1	1.04	Seite R	6
	hneinh	_	1631		Gescho	155	EG		um-Nr.	/Name		002 / Esszimmer			- 0
	entem		tur	_	θist		0 °C	Lüftur		· · · · · · ·				22	
	ometrie				Oli	_	_		ndest-L				Data	0.1	50 h ⁻¹
Raumbreite ba				4.00 m		fiwechs		nser		Il sain Il so	3.0	00 h			
Raumlänge la			_	3.80 m		effizien		irmklas		e		02 -			
	Raumf				AR	1	5.20 m ²		he über				h		50 m
	Gescho	ssh	She		ho		2.80 m	Hö	hen-Ko	rrekturf	aktor		ε	1,0	00 -
	Decker	dic	ke		d		0,20 m		luft-Vol		rom		Ý,,		m3/
	Raumh				hs	2800	2,60 m		emperati				Өза		°C
	Raumy	olu	nen		VR	3	39,52 m³		emp. Re				fvss		
									luft-Vol		rom		V _{ex}		m³/
	ireich								emperate				Om.	-	_°C
			Erdreic	Umfans	z P		0.00 m		mp. Re		staktor		fv,mech,mf		_
			aunwei		B'	_	— m		ederauf		tor		ſкн		W/
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
	(2)		(4)		(0)		1	(5)	(,	(,	(,		(1.1)		4
e di				Länge / Höhe	2	Abzugsíláche	2		유노			Korrekturwert Wärmebrücke	h	al a	Fransmissions-
15	_			五	The same	SE.	33	an	zen	1 5	-	th da	t er	ie is	-SE
Orientierung	Bauteil	rahl	ite	26	Bruttofläche	Sit 2	Nettoffäche	grenzt an	angrenzende Temperatur	Korrektur Faktoren	U-Wert	E E	Ver	ĔÊ	usu i
Orio	Baı	Anzahl	Breite										korrigierter U-Wert	Wärmeverlust- koeffizient	-
		n	ь	1/h	A	AAbzug m²	A'	e/u g/b	θυ/θ ₆	fg/fi	U	ΔUwB W/m ²	Uc/Uequir	Hr W/K	Φτ W
0	AW	1	4,15	2.80	11,6	2.3	9.4	g/0 e	7.	192/19	0,35	0.05	0.40	3,75	- W
_	AF	1	1.50	1,50	2,3	2,0	2.3	e			0.95	0.05	1.00	2.25	
s	AW	1		2,80	12.2	4.4	7,8	e			0,35	0,05	0.40	3,11	1
	AT	1		2,20	4.4	155800	4,4	е			0,95	0,05	1.00	4.40	- 1
w	IW	1		2,80	4,5	2,2	2,3	b	18	0,06	1,50		1,50	0,20	
	IT	1	1,00	2,20	2,2		2,2	b	18	0,06	2,00		2,00	0,26	
Н	FB	1	4,15	4,35	18,1		18,1	ь	18	0,06	1,10		1.10	1,17	
TR	ANSM	ISS	IONSV	VÄRME	VERLUS	T	Нт/Фт		_	Ц_	_			15,14	- :
_		_								70					
			uftwech				min.			,76 m				100	- 2
			Infiltrat				int		4	.74 m					
					nenstrom		· f _{Vsn}				P/h				
				erschuss			unch and • f v mech	inf			P/h				
		_			olumenstr	om \	thorn		19	,76 m	?/h				_
LÜ	FTUN	GS1	VÄRM	EVERL	UST		Hv/ Dv	_						6,72	
NE	TTO-I	IEL	ZLAST				DHL Nette	4	8,9 W/	m²	1	8,8 W/	m³		;
ZU	SATZ	AU	FHEIZ	LEIST	UNG		Фин								
			LAST	THE PERSON NAMED IN											-

https://www.sbz-monteur.de/erklaer-mal/heizlast-nach-din-en-12381-kalkulierte-waerme-teil-2

- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

Begutachtung der Heizflächen.

- Heizkörper? Bauart? Baugröße?
 - Prüfen, ob notwendige Heizleistung auch über vorhandene Heizkörper mit niedrigeren Systemtemperaturen zur Verfügung gestellt werden kann
 - Heizlastberechnung + hydraulischer Abgleich → kritische Heizkörper identifizieren und austauschen
- Fußboden-, Wand- oder Deckenheizung?
 - Geringe Systemtemperaturen, aber erheblicher Aufwand bei Nachrüstung

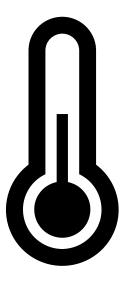
- 1. Berechnung der raumweisen Heizlast, z. B. nach DIN FN 12831-1:2017
- 2. Bestimmung der installierten Heizkörperleistung bei Normbedingungen (75 °C/65 °C/55 °C)
- **3.** Berechnung der Heizkörperleistung bei abgesenkten Heiztemperaturen
- 4. Vergleich der raumweisen Heizlast (Punkt 1) mit der berechneten Heizkörperleistung (Punkt 3) und Identifikation der unterdimensionierten Heizkörper je Nenntemperatur
- 5. Austausch der identifizierten Heizkörper
- 6. Hydraulischer Abgleich

Niedertemperaturheizkörper – Logatrend Plan VC+.

Fußbodenheizung im Neubau weitestgehend gesetzt. FBH ist die bevorzugte Wahl der Wärmeverteilung in Verbindung mit Wärmepumpe.

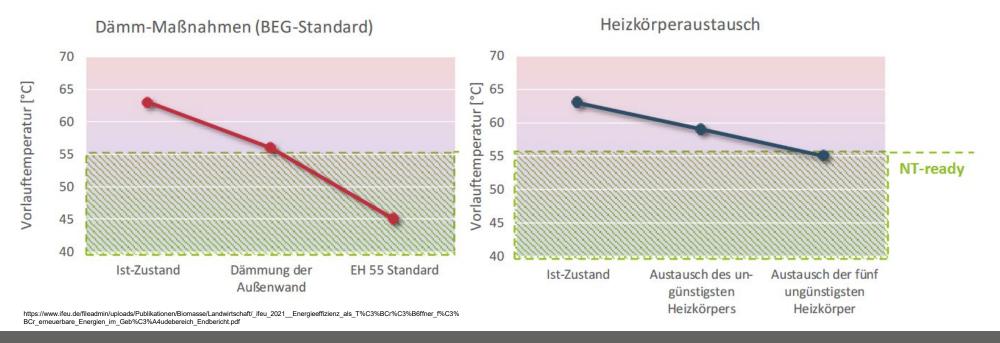
Welche Wärmeverteilung in Verbindung mit Wärmepumpe in der Sanierung?

- 1. Wenn bestehende Heizkörperflächen nicht ausreichen?
- 2. Wenn eine FBH nicht nachträglich installiert werden kann der soll?


Lösung:

Gebläseunterstützte Niedertemperaturheizkörper, speziell in der Sanierung, aber auch im Neubau, bspw. für wenig genutzte Räume.

Niedertemperaturheizkörper – Logatrend Plan VC+.



- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

Systembedingte Vorlauftemperatur – Reduktion.

- Heizfläche / Typ anpassen
- Leistung alter Heizkörper berechnen, nicht immer sind alte Heizkörper zu klein
- Heizkurve einstellen
- Hydraulischer Abgleich, Heizen über alle Heizflächen

Systembedingte Vorlauftemperatur – Wärmepumpe oder Hybrid-System?



Unsere Empfehlung je nach Sanierungsgrad des Hauses.							
Das Gebäude.	Die Empfehlung.	Die Argumentation.					
Fall 1) Ein völlig unsaniertes Bestandsgebäude (z.B. Baujahr 1950, Gebäudehülle und Dach ungedämmt, alte Fenster).	Ein Wärmepumpen- Hybridsystem.	In diesen Fällen sind oft noch Vorlauftemperaturen von über 65 °C erforderlich. Daher empfiehlt sich der Einsatz eines Hybridsystems. Der konventionelle Wärmeerzeuger deckt dabei kurzfristig Temperatur- und Leistungsspitzen ab; die Wärmepumpe sollte von der Leistung her langfristig ausgelegt sein.					
Fall 2a) Ein teilsaniertes Bestandsgebäude (z.B. Baujahr 1975 und Fenster in den letzten 10 Jahren schon erneuert).	Ein Wärmepumpen- Hybridsystem.	Bevorzugter Einsatz von einem Wärmepumpen-Hybridsystem, da oft noch Vorlauftemperaturen von >55°C erforderlich. Der konventionelle Wärmeerzeuger deckt dabei kurzfristig Lastspitzen ab. Die Wärmepumpe sollte von der Leistung her langfristig ausgelegt sein.					
Fall 2b) Ein teilsaniertes Bestandsgebäude (z.B. Baujahr 1975 und Fenster in den letzten 10 Jahren schon erneuert).	Eine Wärmepumpe.	Der effiziente Einsatz einer Wärmepumpe ist gegeben mit einer maximalen Vorlauftemperatur von ≤55 °C. Die Systemtemperaturen können z.B. durch den Einsatz neuer Heizkörper oder Infrarotheizgeräte weiter optimiert werden.					
Fall 3) Ein vollsaniertes Bestandsgebäude (z.B. KfW100/EE100) oder ein Neubau ab dem Jahr 2000.	Eine Wärmepumpe.	In diesen Fällen haben Wärmepumpen ideale Voraussetzungen, da in der Regel eine Fußbodenheizung mit einer maximalen Vorlauftemperatur von 45°C verbaut ist bzw. eine geringe Anzahl Heizkörper verbaut ist, die angepasst werden können.					
Fall 4) Ein Haus gebaut nach 2010, z.B. KfW-55-Standard.	Eine Wärmepumpe.	Ideale Voraussetzung für eine Wärmepumpe dank Fußbodenheizung mit einer maximalen Vorlauftemperatur von 35 °C.					

- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

Hydraulischer Abgleich – Bundesländervergleich.

Notwendigkeit "Hydraulischer Abgleich".

EnSiMiMaV §2 – Heizungsprüfung und Heizungsoptimierung.

Eigentümer eines Gebäudes, in dem eine Wärmeerzeugung durch Erdgas genutzt wird, sind verpflichtet, eine Heizungsprüfung durchzuführen und die Heizungsanlage optimieren zu lassen.

Bestandteile der Prüfung müssen sein:

- Ob die zum Betrieb einer Heizung einstellbaren technischen Parameter für den Betrieb der Anlage zur Wärmeerzeugung hinsichtlich der Energieeffizienz optimiert sind,
- Ob die Heizung hydraulisch abzugleichen ist,
- Ob effiziente Heizungspumpen im Heizsystem eingesetzt werden oder
- Inwieweit Dämmmaßnahmen von Rohrleitungen und Armaturen durchgeführt werden sollten.

EnSiMiMaV §3 – Hydraulischer Abgleich.

Gaszentralheizungssysteme sind hydraulisch abzugleichen. Zulässig zur Berechnung ist nur das **Verfahren B**.

Bis zum 15. September 2024: in Wohngebäuden mit mindestens sechs Wohneinheiten

Notwendigkeit "Hydraulischer Abgleich".

Richtlinien und Verordnungen, die den Abgleich einfordern.

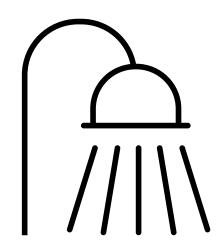
GEG Gebäudeenergiegesetz	§ 1 Zweck und Ziel (1) Zweck dieses Gesetzes ist ein möglichst sparsamer Einsatz von Energie in Gebäuden einschließlich einer zunehmenden Nutzung erneuerbarer Energien zur Erzeugung von Wärme, Kälte und Strom für den Gebäudebereich.
DIN EN 14336	7 Hydraulischer Abgleich "Die Durchflussmengen müssen hydraulisch abgeglichen werden und den Planungsvorgaben entsprechen."
DIN V 4701-10	1 Anwendungsbereich "Vorausgesetzt wird die Dimensionierung aller Anlagenkomponenten nach dem Stand der Technik und vollständig einregulierte Anlagen (z.B. hydraulischer Abgleich) der Heizungs-, Lüftungstechnik und Trinkwassererwärmung."
VOC/C – DIN 18380	3.5 Einstellung der Anlage "3.5.1 Der Auftragnehmer hat die Anlagenteile so einzustellen, dass die geplanten Funktionen und Leistungen erbracht und die gesetzlichen Bestimmungen erfüllt werden. Der hydraulische Abgleich ist mit den rechnerisch ermittelten Einstellwerten so vorzunehmen, dass bei bestimmungsgemäßem Betrieb, also z.B. auch nach Raumtemperaturabsenkung oder Betriebspausen der Heizanlage, alle Wärmeverbraucher entsprechend ihrem Wärmebedarf mit Heizwasser versorgt werden."

Hydraulischer Abgleich – Auswirkungen auf das Heizsystem.

Mehrheizkomfort durch:

- Gleichmäßige Wärmeabgabe
- Vermeidung von Strömungsgeräuschen
- Bessere Regelbarkeit der Anlage

Geringere Kosten durch:


- Weniger Energieverbrauch
- Schnellere Amortisierung der Kosten für Brennwertegeräte / Dämmung
- Höhere Betriebssicherheit / längere Lebensdauer der Komponenten

Weniger Umweltbelastung durch:

- Verringerten Energieverbrauch
- Niedrigere Emissionen

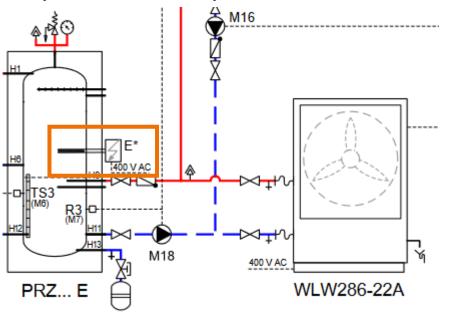
- Stromversorgung
- Platzangebot im Heizungskeller
- Auswahl / Erschließung der Wärmequelle
- Aufstellbedingungen
- Heizlastberechnung nach Verfahren B
- Begutachtung der Heizflächen
- Systembedingte Vorlauftemperatur
- Hydraulischer Abgleich
- Erzeugung Trinkwarmwasser

Erzeugung Trinkwarmwasser – Anforderungen an Großanlagen.

 Großanlagen = Trinkwasser-Speichergröße > 400 Liter oder/und Leitungsinhalt > 3 Liter zwischen Speicher und Entnahmestelle

Art des Gebäudes	Speichervolumen	Leitungsvolumen (TW-Erwärmer bis Entnahmequelle)	Anforderungen an Bau (resultiert aus Spalte 2 und 3)	Definition
Ein-/ Zweifamilienhaus	Egal	Egal		Kleinanlage
Andere Gebäude	< 400 Liter	≤ 3 Liter		Kleinanlage
Andere Gebäude	> 400 Liter	≤ 3 Liter		Großanlage
Andere Gebäude	> 400 Liter	> 3 Liter	Einbau einer Zirkulation	Großanlage
Andere Gebäude	< 400 Liter	> 3 Liter	Einbau einer Zirkulation	Großanlage

DVGW Arbeitsblatt W551
DIN EN 1988-200 (Technische Regeln für Trinkwasserinstallationen)

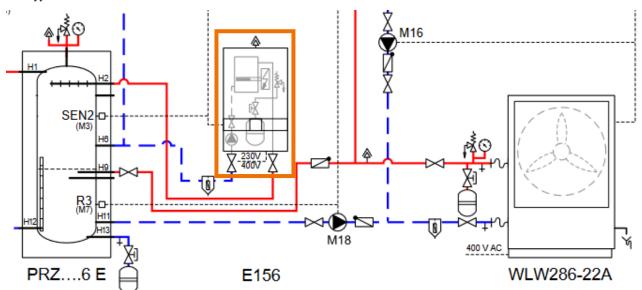


Erzeugung Trinkwarmwasser – Zentrale/Dezentrale Lösungen.

- Zentrale TW-Erwärmung in MFH = meist **Großanlagen**
 - Permanente Warmwasseraustrittstemperatur am Trinkwasserspeicher > 60 °C gefordert
 - Am Eintritt der Zirkulationsleitung in den Speicher dürfen 55 °C nicht unterschritten werden
 - Gesamter Inhalt von Vorwärmestufen muss einmal täglich auf 60 °C aufgeheizt werden
- Hohes Temperaturniveau nicht für Wärmepumpen geeignet
- Der Hub muss anderweitig erfolgen

Erzeugung Trinkwarmwasser – Zentrale, monoenergetische Lösungen.

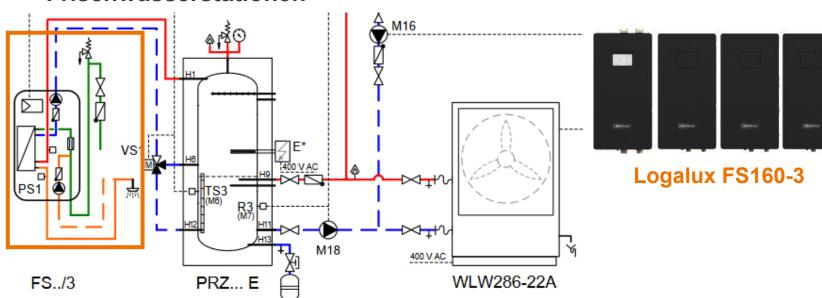
(Modulierender) E-Heizstab



- "E-Kessel"
- Frischwasserstationen
- Bivalent Ergänzung fossiler Wärmeerzeuger

Erzeugung Trinkwarmwasser – Zentrale, monoenergetische Lösungen.

- (Modulierender) E-Heizstab
- "E-Kessel"

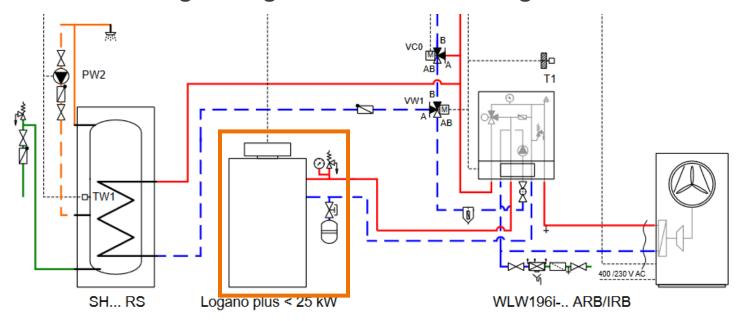


Logamax E156

- Frischwasserstationen
- Bivalent Ergänzung fossiler Wärmeerzeuger

Erzeugung Trinkwarmwasser – Zentrale, monoenergetische Möglichkeiten.

- (Modulierender) E-Heizstab
- "E-Kessel"
- Frischwasserstationen


Logaflow HSM plus WW

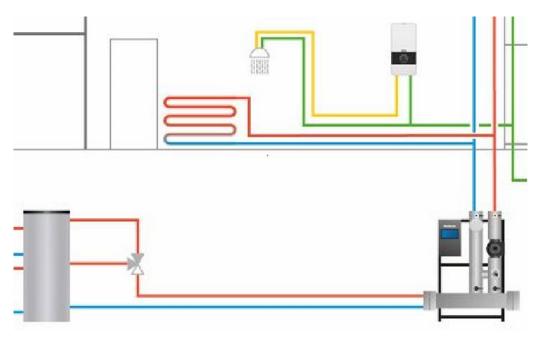
Bivalent – Ergänzung fossiler Wärmeerzeuger

Erzeugung Trinkwarmwasser – Zentrale, bivalente Lösungen.

- (Modulierender) E-Heizstab
- "E-Kessel"
- Frischwasserstationen
- Bivalent Ergänzung fossiler Wärmeerzeuger

Erzeugung Trinkwarmwasser – Dezentrale, monoenergetische Lösungen.

Wohnungsstationen



Logamax kompakt WS170/WS160

E-Durchlauferhitzer

Erzeugung Trinkwarmwasser – Dezentrale, monoenergetische Lösungen.

- Wohnungsstationen
- E-Durchlauferhitzer

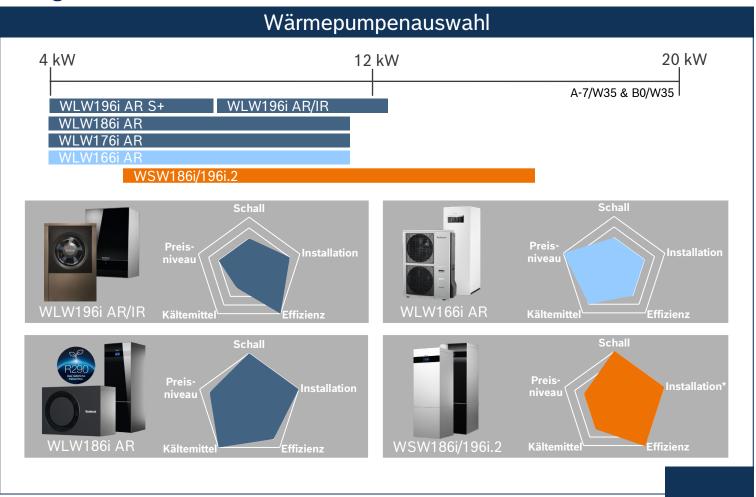
Logamax ED166

Buderus Produkt-Portfolio.

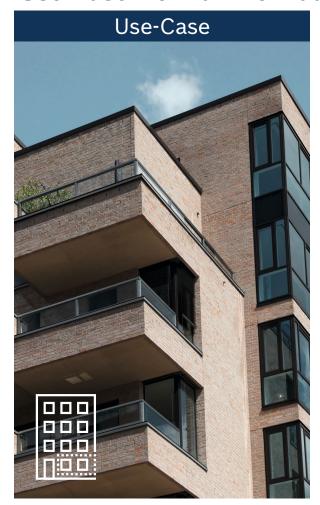
Wärmepumpen – Lösungen für die Klimaneutralität im Gebäudebereich?

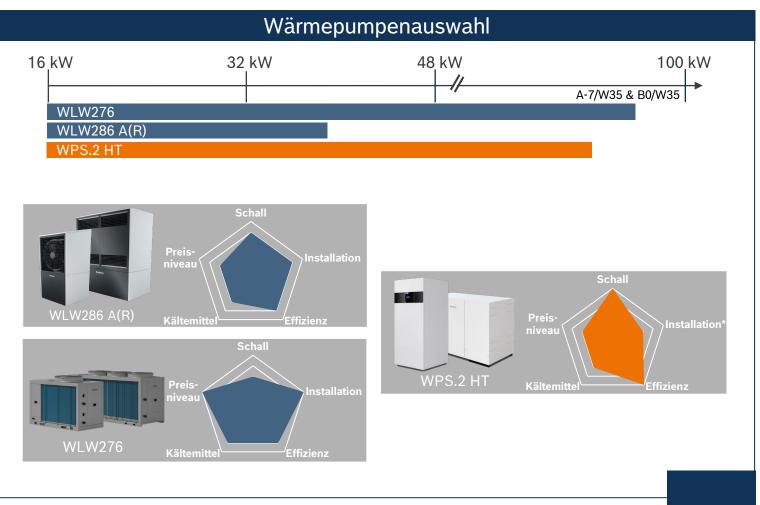
Logatherm Wärmepumpen-Portfolio.

Leistungsübersicht.



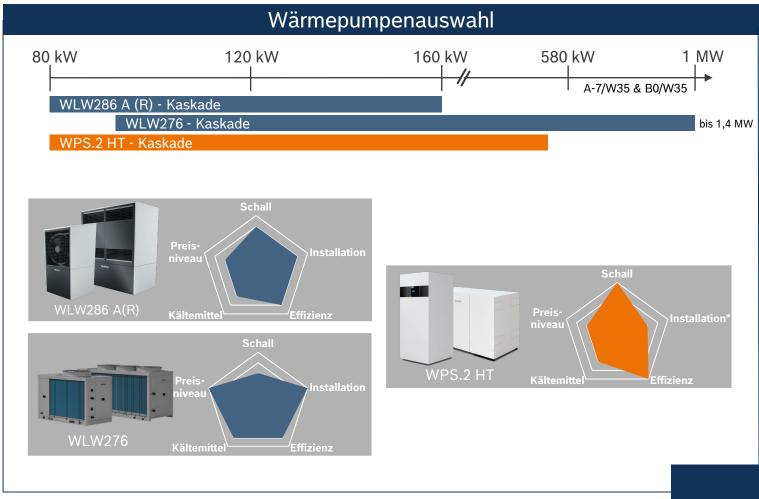
Logatherm Luft/Wasser-Wärmepumpen-Portfolio.


Use-Case: Neubau und Sanierung im Einfamilien- & Zweifamilienhaus.

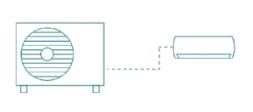


Logatherm Luft/Wasser-Wärmepumpen-Portfolio.

Use-Case Mehrfamilienhaus.



Logatherm Luft/Wasser-Wärmepumpen-Portfolio.

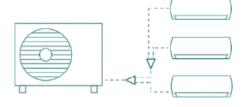

Use-Case Nichtwohngebäude.

Alternativen zur Luft/Wasser-Wärmepumpe.

Logacool Luft/Luft-Wärmepumpen.

Single-Split Anwendungen:

- Residential (u. U. auch Commercial)
- -2,6-7 kW
- 1x Inneneinheit
- Kältemittel R32 / R290

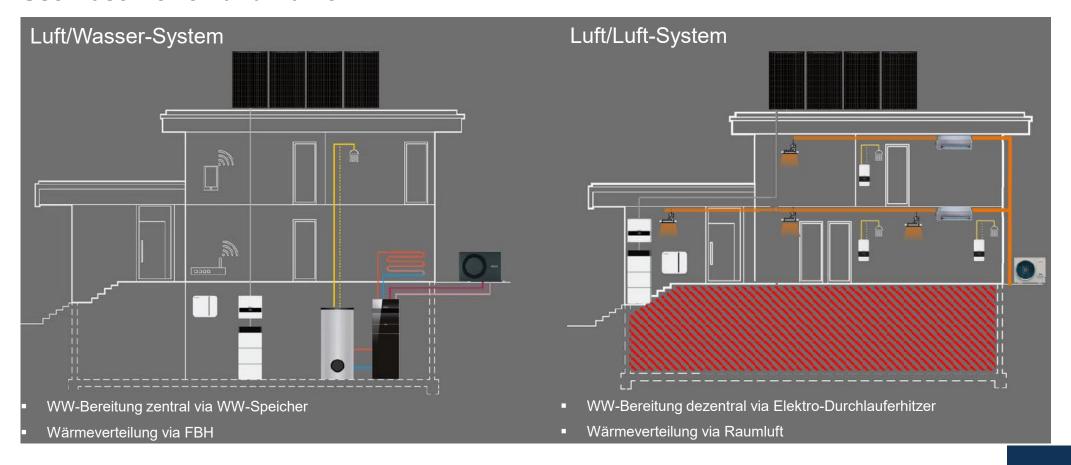


Multi-Split Anwendungen:

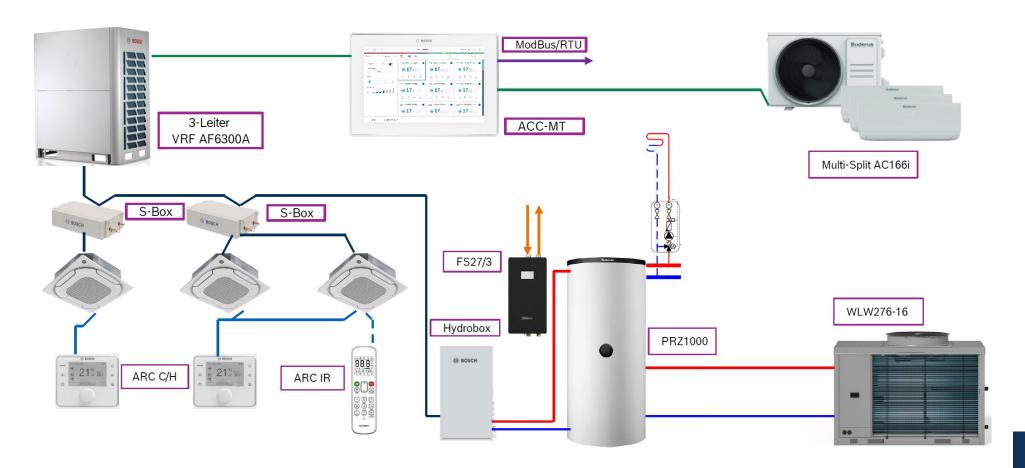
- Residential / Commercial
- 5,3 12,3 kW
- 1 bis 5 Inneneinheiten
- Kältemittel R32

Multi-Split VRF Anwendungen:

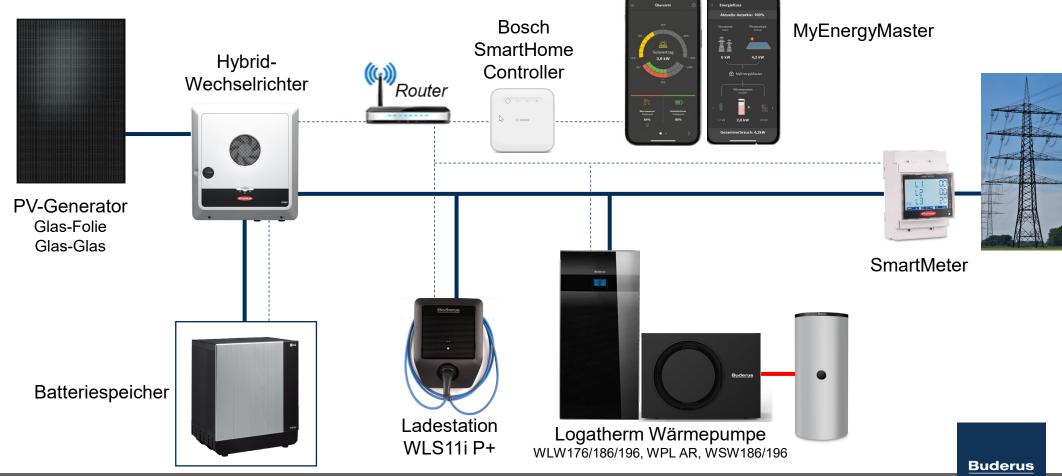
- Commercial
- 7 90 kW (Kaskade bis 270 kW)
- Bis zu 60 Inneneinheiten
- Kältemittel R32 / R410a


Residential Air Conditioning

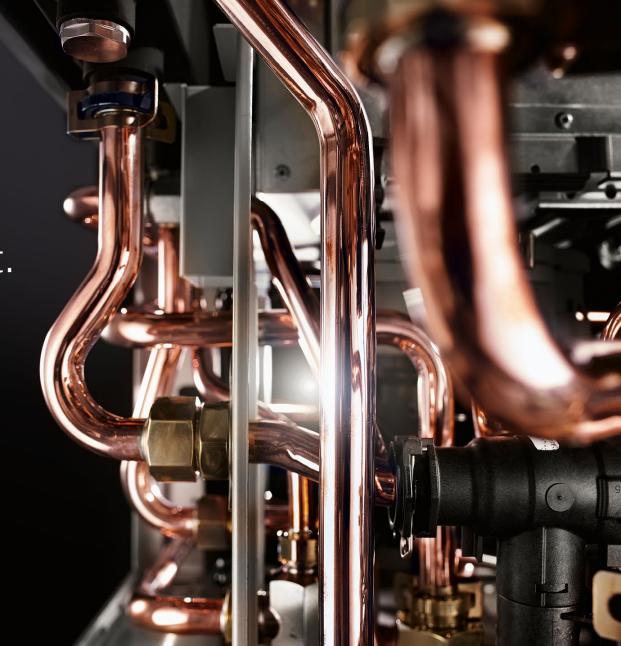
Variable Refrigerant Flow


Logacool Wärmepumpen-Portfolio.

Use-Case Heizen und Kühlen.


Logacool Wärmepumpen-Portfolio.

Usa Case Heizen und Kühlen - Referenzprojekt.


Buderus Energiemanagement.

Systemlandschaft Elektrifizierung.

Buderus

Auf eine glänzende Zukunft.

