
Oberflächenabdichtungs-Testfelder

Ergebnisse aus über 20 Jahren Feldversuchs-Betrieb der Dillinger Hüttenwerke

AG der Dillinger Hüttenwerke Werksstandort Dillingen/Saar

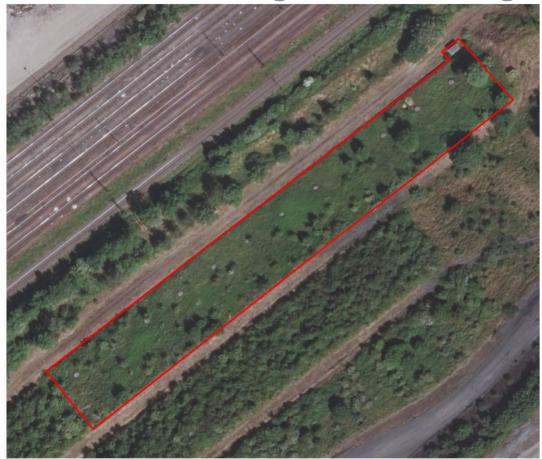
- Saarland
- Mündung des Flüsschens Prims in die Saar
- nördlich der 1680 gegründeten Vauban-Festungsstadt Saarlouis
- Gründung einer Eisenhütte 1685 (Ludwig XIV)

AG der Dillinger Hüttenwerke

Werksstandort Dillingen/Saar

heute, 339 Jahre später:

- Integrierte Stahlherstellung von Erz und Kohle über Roheisen und Stahl bis zum gewalzten Grobblech
- ca. 5350 Mitarbeiter
- ca. 1,85 Mio t/a Grobblech
- und:eine werkseigene DK1-Deponie



AG der Dillinger Hüttenwerke Werkseigene DK1-Deponie

Feldversuchsanlage am Nordhang

AG der Dillinger Hüttenwerke Versuchsziele

• angelegt, um unter Realbedingungen die, von der damaligen TA-Siedlungsabfall (TASi) geforderten, Gleichwertigkeitsnachweise für 11 verschiedene Dichtungsvarianten gegenüber der "Regelabdichtung auf Basis Tonmineralien" zu führen. Heutige Bewertung anhand bundeseinheitlicher Qualitätsstandards (BQS). Ziel: Ersatz Tonminerale durch eisenhüttenstämmige Mineralstoffe.

• darüber hinaus wurde untersucht, welchen Beitrag unverdichtet abgelegte bindige Rekultivierungsböden mit einer vitalen Vegetation am Wasseraustrag aus dem Wasserhaushalt einer Oberflächenabdichtung leisten. Ziel: Minimierung der Sickerspende unterhalb der Rekultivierungsschicht.

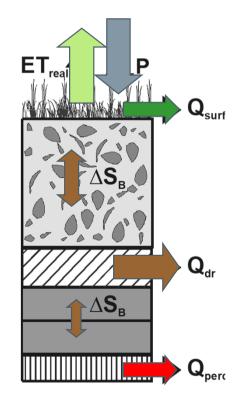
Feldversuchsanlage 12 Großlysimetern auf ca. 4600 m² Fläche

- je ca. 200 m² Fläche und
- 420 bis 510 m³ Volumen
- Komplexe hydraulische Abgrenzung zur Vermeidung von Randumläufigkeit
- Durchgehende Rekultivierungsschicht

Feldversuchsanlage Bau der 12 Großlysimetern in 2001, Datenauswertung ab 1.4.2002

• 1 : 2,5 (23°) Hangneigung

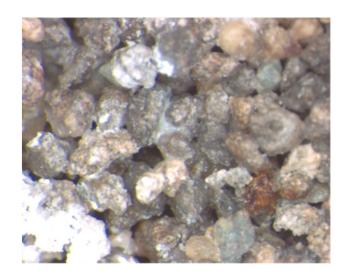
Jeweils ein Messschacht DN1800
 zur Aufnahme Messgeräte,
 Steuerung und Datenlogger

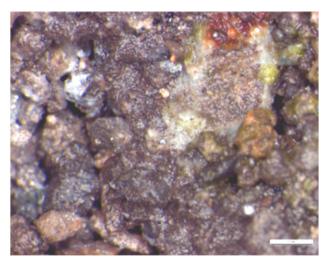

Feldversuchsanlage Messumfang und Auswertungen

Erfassung der meteorologischen Kennwerte (Wetterstation vor Ort)

Messung des Abflussverhaltens der Einzelschichten

Ableitung von Wasserhaushaltsbilanzen


$$P = ET_{real} \pm \Delta SB + Q_{surf} + Q_{drain} + Q_{perc}$$

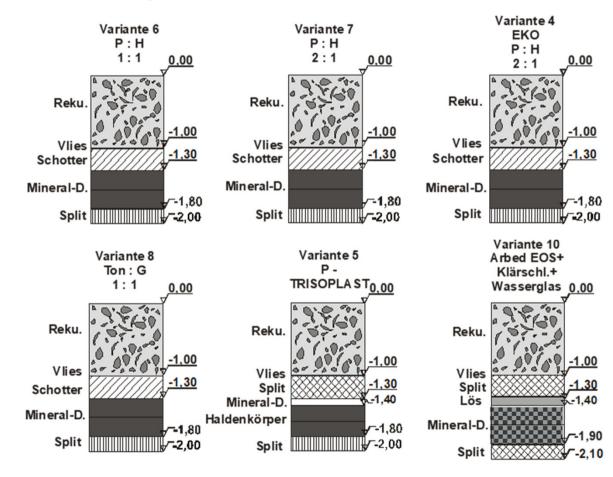


Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

Gießpfannen oderKonverter-Schlacke alsDichtungsbaustoff ?

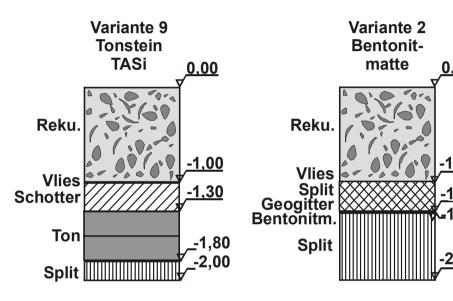
Einlagerungsverdichtung

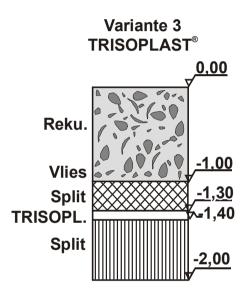
In Stahlwerksschlacken vorliegendes **mobiles Ca(OH)₂** reagiert unter CO₂-Verbrauch in wässriger Lösung zu CaCO₃.


- => Ausfällung von großen Mengen CaCO₃ dort, wo die Lösung mit Atmosphären-CO₂ und Porenwasser in Berührung kommt.
- => Langfristige diffusive Nachlieferung von Ca(OH)₂ aus dem Korninneren entlang eines Sättigungsgradienten.

Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

 Dichtungs-Baustoff-Varianten im direkten
 Vergleich
 untereinander:


- Gießpfannenschlacke P
- Hochofenfeinststaub H
- Elektroofenschlacke EOS
- Ton
- Trisoplast
- Klärschlamm (kommunal)
- Wasserglas



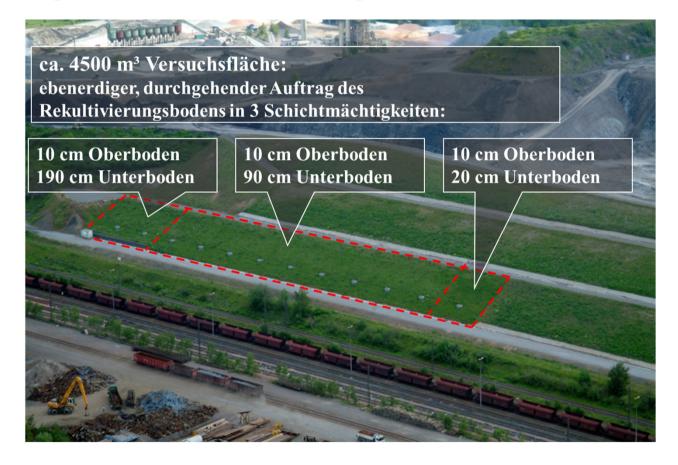
Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

Dichtungs-BaustoffVarianten im direkten
Vergleich zu
"marktgängigen"
tonmineralischen
Dichtungsbaustoffen

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

Bindiger Boden aus Buntsandsteinverwitterung

Locker abgelegt mit
 Langarmbagger ohne
 Glätten der Oberfläche



Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

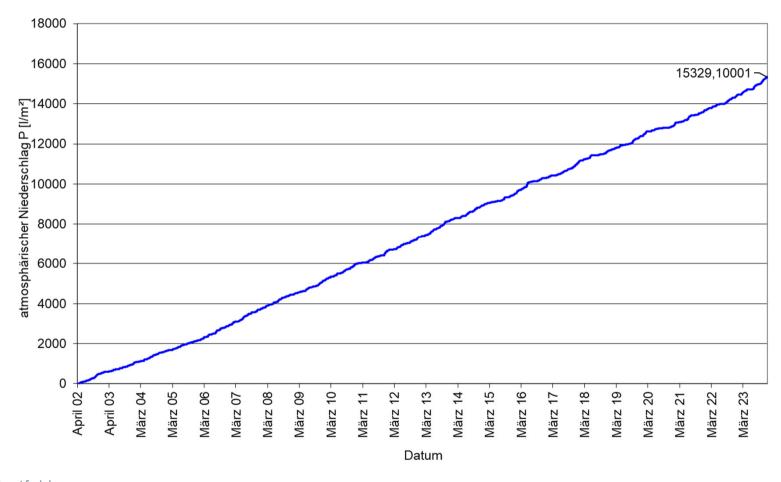
3 Schicht-mächtigkeiten:30 cm, 100 cm

und 200 cm

Ergebnisse

- Dichtungsbaustoffe
- Wasserhaushaltswirksame Reku

Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

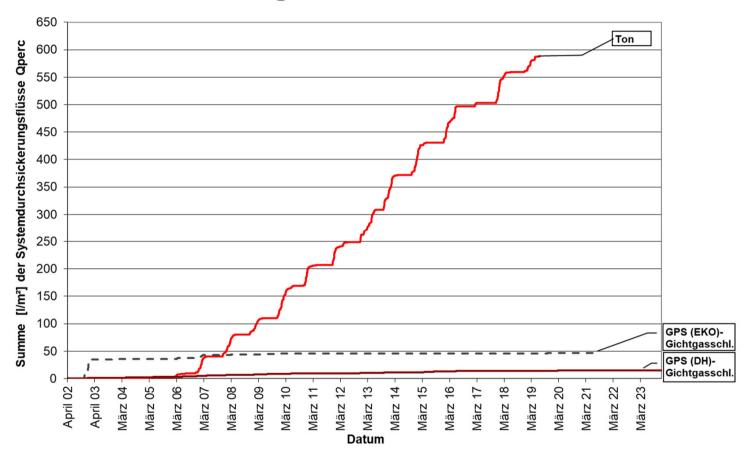

• Ca. **700 mm**

Jahresniederschlag

• In 22 Jahren ca.

15.000 l/m²

Niederschlagseintrag


Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

Vergleich zwischen den
Summenkurven der
Durchsickerung durch die
OFA mit

- tonmineralischer Dichtung
- Gießpfannen-Schlacke

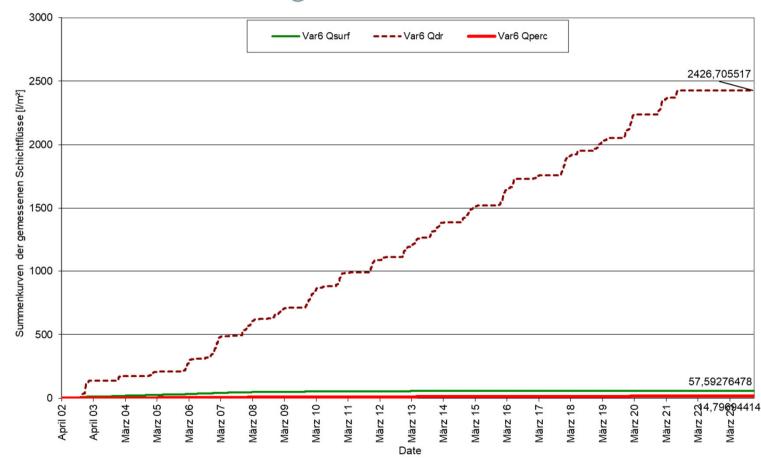
Beide unter 5% des

Niederschlagseintrags

Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

Summenkurven der

Oberflächen-,


Drainagen- und

Durchsickerungs-

Mengen in I/m² für die

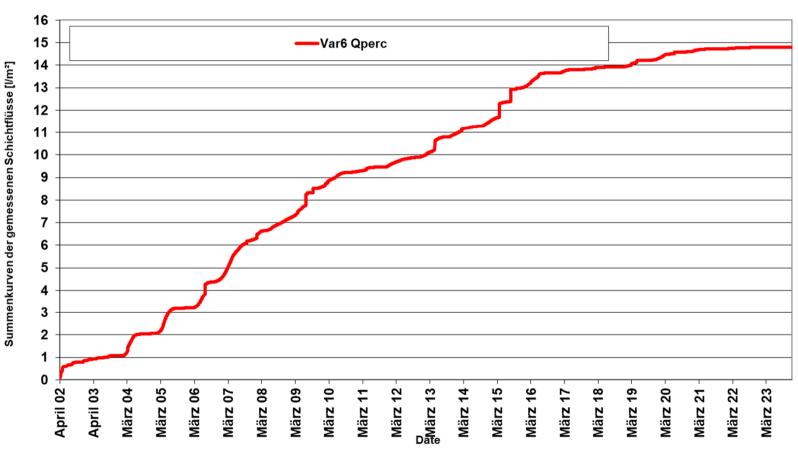
OFA auf Basis

Gießpfannenschlacke

Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

varo Qperc

Summenkurve der


Durchsickerung in

I/m² für die OFA-

Variante mit

Gießpfannenschlacke

als Dichtungsbaustoff

Stahlwerks-Schlacken als mineralischer Dichtungsbaustoff

BQS 5-0 Anforderungen

Die k-Werte wurden für die eingebaute Dichtungsschicht

- 1. nach Einbau ermittelt
- aus den gemessenen Flüssen rückgerechnet.

Ergebnis	Versuchszeitraum	Anforderung BQS
$k \le 3.6*10^{-9} \text{ m/s}$	FÜ Einbau	$k \le 5*10^{-9} \text{ m/s (DIN 18130)}$
$k \le 4.62*10^{-11} \text{ m/s}$	Mittel-k-Wert 1.4.2002 bis 1.4.2009, aus n = 2557 Tages-k-Werten, soweit Dränagefluss erfolgte	Nicht nach DIN 18130
$k \le 1,09*10^{-10} \text{ m/s}$	95%-Quantil aus n=2557 Tages-k- Werten, soweit Dränagefluss erfolgte	Nicht nach DIN 18130
Q_{perc} ø $Jahre1-5=1,0$	1.4.2002 bis 1.4.2009	Permeation ≤ 20 mm / Jahr
mm/Jahr	im 5-jährigen Mittel	im 5-jährigen Mittel
Q_{perc} ØJahre2-6 = 1,14 mm/Jahr		
Q_{perc} ØJahre3-7 = 1,22 mm /Jahr		
$Q_{perc}\Sigma Jahre1-7=7,34$	1.4.2002 bis 1.4.2009	
l/m^2	Summarisch 7 Jahre	
713,04 l/m ²		
Dränagefluss, 4576 mm Niederschlag		

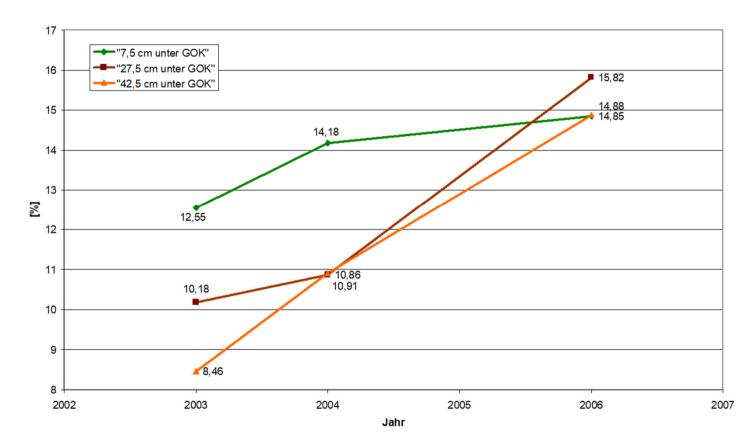
Ergebnisse

- Dichtungsbaustoffe
- Wasserhaushaltswirksame Reku

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

Entwicklung der **nutzbaren**Feldkapazität nFK anhand
von 135 Bodenproben aus

3 Tiefen der

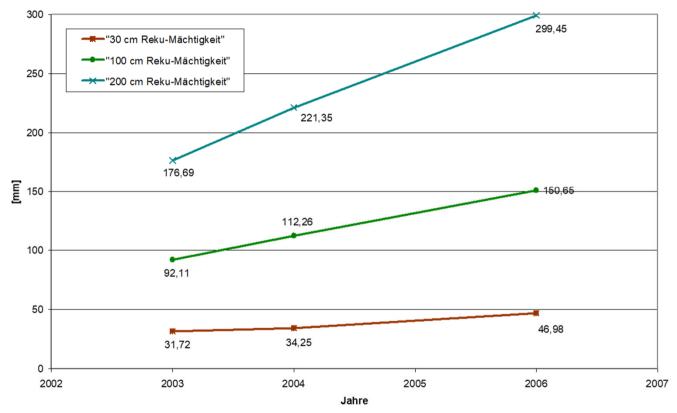

Rekultivierungsschichten:

5-10 cm unter GOK

25-30 cm unter GOK

40-45 cm unter GOK

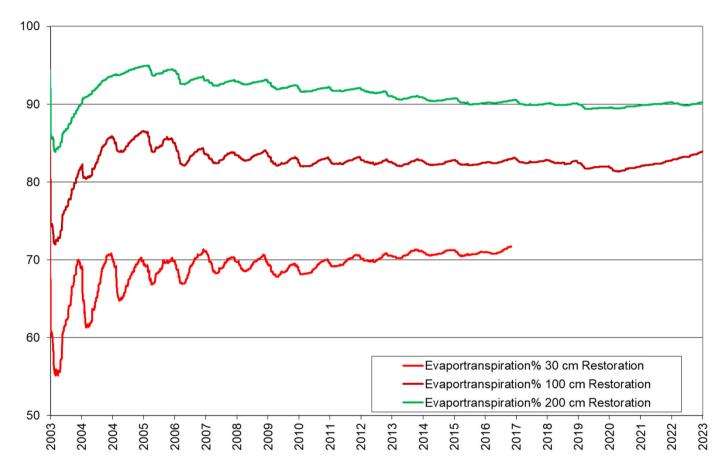
Entwicklung der nFK (pF 4,2 bis 1,8) in 3 Tiefenstufen unter GOK



Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

pflanzenverfügbaren
Wasserangebots in mm bzw.
I/m² anhand der nFK der 135
Bodenproben

für **200 cm, 100 cm und 30 cm** Rekultivierungs-Aufbau


Entwicklung der nFK (pF 4,2 bis 1,8) für 3 Reku-Schichtmächtigkeiten bei dem gewählten Aufbau Oberboden/Unterboden

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

- Wirkungsgrad der Reku beim Austrag von Niederschlag aus dem OFA-System
- %-Anteil der realenEvapotranspiration amNiederschlagseintrag

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

•BQS 7-2

• 5-Jahresmittel der

Durchsickerung < 10 %

des mittleren

Niederschlags-Eintrags

von 782 mm

o zai opi	anni or ann	9 401 -1	apotiant	piiation
%P des 30jährigen Mittels				Soll < 10%
5- Jahresgruppe	Regen	2m WHS Feld 11	2m WHS Feld 12	Durchschnitt 2m WHS
	30 jähriges Mittel P [mm]	Qperc %P	Qperc %P	Qperc %P
2002-2006	782,00		1,24	2,18
2003-2007	782,00	3,21	1,04	2,13
2004-2008	782,00	2,02	0,51	1,27
2005-2009	782,00	2,12	0,52	1,32
2006-2010	782,00	2,68	0,54	1,61
2007-2011	782,00	2,04	0,48	1,26
2008-2012	782,00	1,24	0,21	0,72
2009-2013	782,00	1,00	0,08	0,54
2010-2014	782,00	1,08	0,08	0,58
2011-2015	782,00	0,52	0,07	0,30
2012-2016	782,00	0,46	0,08	0,27
2013-2017	782,00	0,35	0,07	0,21
2014-2018	782,00	0,28	0,07	0,18
2015-2019	782,00	0,10	0,39	0,24
2016-2020	782,00	0,09	0,55	0,32
2017-2021	782,00	0,06	0,54	0,30
2018-2022	782,00	0,29	0,54	0,42
2019-2023	782,00	0,29	0,54	0,41

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

- •BQS 7-2
- Jahres-Eintrag in den Deponiekörper < 60 mm
- Im Durchschnitt aller Jahre 2002-2023 7,7 mm

Einzeljahres-	Summen				Soll < 60mm
Jahr				2m WHS Feld	
	P [mm]	Qperc [mm]	Qperc [mm]	Qperc [mm]
20	002	1017,9	32,8	18,6	25,7
20	003	655,1	58,9	26,4	42,7
	004	800,0		0,3	
20	005	695,3	0,8	0,7	0,7
20	006	898,1	29,1	2,3	15,7
20	07	958,9	36,1	11,0	23,6
20	800	835,9	12,5	5,6	9,0
20	009	710,4	4,3	0,7	2,5
20)10	758,3	22,7	1,4	12,1
20)11	544,5	,	0,2	2,2
)12	645,7	4,5	0,5	2,5
20)13	946,8	3,2	0,4	1,8
20)14	808,2		0,6	4,1
20)15	610,0	0,8	1,3	1,1
20)16	922,8	1,9	0,4	1,2
20)17	811,7	0,1	0,0	0,1
20)18	802,5	0,8	0,2	0,5
20)19	764,8	0,2	13,1	6,6
20)20	655,3	0,7	7,7	4,2
20)21	804,9	0,4	0,1	0,3
20)22	778,1	9,2	0,2	4,7
20)23	972,0	14,1	0,1	7,1
Durchschnitt		782,2	11,2	4,2	7,7

Lockere Schüttung des Rekultivierungsbodens zur Optimierung der Evapotranspiration

•BQS 7-2

Jahres-Eintrag in den Deponiekörper < 20 mm

5 jährige Mitte	jährige Mittel der Durchsickerung			Soll < 20mm
5-		2m WHS	2m WHS	Durchschnitt
Jahresgruppe		Feld 11	Feld 12	2m WHS
		Qperc [mm]	Qperc [mm]	Qperc [mm]
2002-2006	ab 1.4.2002	24,4	9,7	17,0
2003-2007		25,1	8,2	16,6
2004-2008		15,8	4,0	9,9
2005-2009		16,5	4,1	10,3
2006-2010		20,9	4,2	12,6
2007-2011		16,0	3,8	9,9
2008-2012		9,7	1,7	5,7
2009-2013		7,8	0,6	4,2
2010-2014		8,5	0,6	4,5
2011-2015		4,1	0,6	2,3
2012-2016		3,6	0,6	2,1
2013-2017		2,7	0,6	1,6
2014-2018		2,2	0,5	1,4
2015-2019		0,8	3,0	1,9
2016-2020		0,7	4,3	2,5
2017-2021		0,4	4,2	2,3
2018-2022		2,3	4,3	3,3
2019-2023		2,2	4,2	3,2

Nutzung und Ausblick

 Realisierung einer an den Ergebnissen orientierten Oberflächenabdichtung auf der werkseigenen Deponie

 Dauerhafter Betrieb der Großlysimeter 11 und 12 ("Wasserhaushaltsschicht")

Realisierung einer an den Ergebnissen orientierten Oberflächenabdichtung

GPS als **Dichtungsbaustoff**

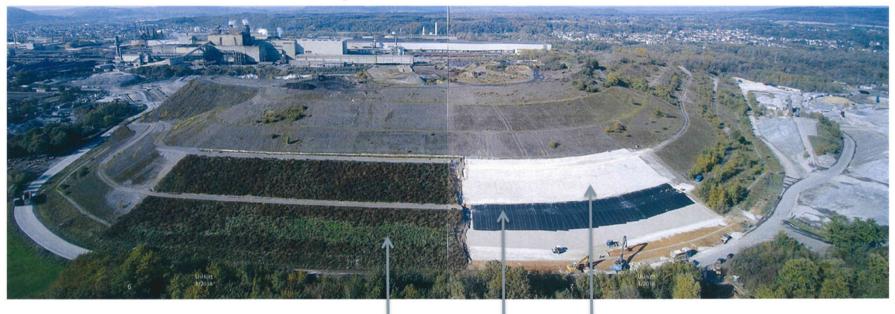
Genehmigung als Ausgleichsschicht mit nachweislich abdichtender Wirkung (auf Basis der Feldversuchsergebnisse)

Realisierung einer an den Ergebnissen orientierten Oberflächenabdichtung

Wasserhaushaltsschicht: 110 cm Unterboden, 90 cm humoser Oberboden

unverdichteter Einbau mit Langarmbagger bzw. Telebelt

ohne Startbegrünung



nFK > 160 mm/m³, LK > 8 Vol-%, BQS 7-1 und 7-2 konform

Realisierung einer an den Ergebnissen orientierten Oberflächenabdichtung

2016 und 2017 Rekultivierung (19.000 m²) im Rahmen der Oberflächenabdichtung

GPS-Ausgleichs-/Dichtungsschicht, 0,2 m

Kunststoffdichtungsbahn nur im Bereich Bermenweg

Wasserhaushaltsschicht mit 2 m locker geschüttetem Boden, Selbstbegrünung

Weiterbetrieb der Felder 11 und 12 mit 200cm wasserhaushaltsoptimierter Reku

- Aktualisierung der Datenerfassung (neuer Logger, neue Datenverbindung, neue PC-Basis)
- Vereinfachte und zukunftstaugliche Software-Auswertung, möglichst direkt nach den Erfordernissen der BQS

Vielen Dank für Ihre Aufmerksamkeit

Dr. Norbert Wolsfeld
AG der Dillinger Hüttenwerke
Abt. Umweltschutz/-technik
norbert.wolsfeld@dillinger.biz

